Chapter 2 - General Design Principles

This Chapter provides general design principles that should be considered in the design of all development. Certain guidelines may only apply to non-residential projects depending on whether a proposed project includes specific features.

2.1 - Site Design Principles

A. **Fit the site.** Each development project should be designed to respect site character and constraints, and minimize changes to natural conditions, rather than altering a site to accommodate a stock building plan.

B. **Think about function.** A site’s various activities and elements should be logically located so the project operates efficiently and takes into account the needs of pedestrians and other users.

C. **Provide a pleasing transition.** Attention should be given to the transition between the street and the project through definition of the building entry, walkways and landscaping.

D. **Coordinate site elements with the buildings.** The design and placement of fences, retaining walls, gates, arbors, and other site features should relate to building architecture and site topography. The Planning Commission is especially concerned that these elements be of the same quality, in design and materials, as the buildings.

2.2 - Building Design Principles

A. **Keep building elements in proportion.** Proportion, continuity, harmony, simplicity, rhythm and balance should prevail in building design. Building elements should be balanced and in proportion to one another.

B. **Strive for interest, not clutter.** The City encourages well-articulated, but not cluttered building elevations. Large roof and wall plans unrelieved by shadow or textural interest are generally not acceptable. However, too many elevation details can overwhelm the senses and appear awkward, gaudy, and/or chaotic.
C. **Pay attention to details.** Attention to detailing, and emphasis on vertical and horizontal articulation, are encouraged as tools to visually reduce the apparent mass of a building.

D. **Select materials carefully.** Exterior treatment should be restrained, not harsh or garish, and should be selected for durability, weathering characteristics, and authenticity, as well as for beauty.

E. **Think about maintenance.** Ease of maintenance should be considered in selecting forms, fixtures, materials and finishes.

F. **Coordinate the new with the old.** When new construction is proposed on a site with existing structures that are to be retained, the new work should be designed to coordinate with the old.
Chapter 3 - Commercial and Industrial Project Design

The commercial areas outside of the Downtown and the City’s manufacturing/industrial areas present special urban design challenges. The present character of each of these areas reflects both the architectural styles of non-residential, automobile-oriented development that were predominant when most of the structures in each area were built, and various modernization and renovation efforts thereafter.

The guidelines in this Chapter apply to all new and renovated commercial and industrial structures outside of the Downtown. Separate guidelines for commercial, and manufacturing/industrial projects are provided.

3.1 - Commercial Project Design Guidelines

The following design guidelines apply to all commercial projects.

A. Overall design objectives for commercial projects. The design of each project should work toward achieving the following objectives.

1. Consider Patterson’s small town scale and demonstrate sensitivity to the design context of the surrounding area.

2. Avoid “boxy” structures with large, flat wall planes by articulating building forms and elevations to create interesting roof lines, building shapes, and patterns of shade and shadow.

A “blind” arcade is an example of a simple design element that adds depth to an otherwise flat expanse of wall.
3. Preserve the design integrity of historic structures and neighborhoods adjacent to the commercial area.

4. Provide landscaping as a project amenity, and to help screen parking, equipment and storage areas.

5. Provide site access, parking and circulation that is planned in a logical, safe manner that avoids awkward or cramped turning movements.

6. Consider the need for signs and their appropriate scale and locations early in the design process, so that they are not an afterthought.

7. Design spaces for outside equipment, trash receptacles, storage, and loading areas in the least conspicuous part of the site.

B. General architectural design guidelines.

1. **Architectural style.** No particular architectural style or design theme is required in the City nor can Patterson be defined by any one particular architectural style. A wide range of architectural characteristics adds to the City’s overall image. While variety in design is generally encouraged, the compatibility of new projects with the existing built environment should be a priority. The goal is to preserve not only the historic flavor of the community but, equally important, its scale and ambience. “Canned” or “trademark” building designs used by franchised businesses in other cities may not be acceptable in Patterson, as they can collectively have the effect of making the commercial areas of the City look like anywhere in California.

2. **Neighborhood compatibility.** In designing a building, it is important to analyze the areas surrounding the building site to find elements of compatibility that can be used in a new design. Simply duplicating the character of surrounding buildings, however, should not be a design goal. It is important for each site to both maintain its own identity and be complementary to its surroundings. Thus, a new building can be unique and interesting and still show respect for and compatibility with the architectural styles and scale of other buildings in its vicinity.
Design factors that contribute to neighborhood compatibility include:

a. Appropriate design theme;

b. Proportional building scale/size;

c. Appropriate building setbacks and massing; and

d. Appropriate colors, textures, and building materials.

3. **Design consistency.** Designs should demonstrate a consistent use of colors, materials, and detailing throughout all elevations of the building. Elevations which do not directly face a street should not be ignored or receive only minimal architectural treatment. Each building should look like the same building from all sides.

4. **Form and mass.** A building’s design should provide a sense of human scale and proportion. Structures should be designed to avoid a "box-like" appearance. Horizontal and vertical wall articulation should be expressed through the use of wall offsets, recessed windows and entries, awnings, full roofs with overhangs, second floor setbacks, or covered arcades.
5. Rooflines.
 a. Roof design contributes strongly to the image of a structure as having quality and permanence. Structures with pitched roofs, or pitched roofs over key building elements can sometimes project a more small town image and reinforce a pedestrian orientation. Structures with flat roofs and parapets can be appropriate with special attention to the wall-to-parapet juncture, and to cornice details.
 b. Pitched roofs may be gable, hip, or shed-style, but should either be full pitched or should appear so from the street. Any flat portions (i.e., equipment wells) should be relatively small and not visible from streets or other public areas. On larger structures, pitched roofs should be multi-planed to avoid large, monotonous expanses.
 c. Flat roofs are appropriate for larger commercial structures when it is determined that a project's overall design is amenable to flat roofs and is otherwise consistent with the objectives of these guidelines. When flat roofs are used, there should be a screening parapet topped with coping, or a cornice. Mansards should be used only to the extent that they maintain the same roof pitch as surrounding structures and are both high and deep enough to create the illusion of being a true roof. Steeply-pitched mansard roofs are discouraged.

 a. All roof mounted equipment shall be completely screened from a horizontal line of sight. Screening should be an integral part of the roof design and not appear as a “tacked-on” afterthought. For flat roofs, a screen enclosure behind a parapet wall may be used if it is made to appear as an integral part of the building design. Ground or interior-mounted mechanical equipment (with appropriate screening) is encouraged as an alternative to roof-mounting.
 b. Roof penetrations (such as plumbing and exhaust vents, air conditioner units, and transformer boxes) should be grouped together where feasible to minimize their visual impact. The roof design should help to screen or camouflage rooftop protrusions.
7. **Parapets.** Parapet walls should be treated as an integral part of the building design. They should receive architectural detailing consistent with the rest of the facade and should not appear as unrelated elements intended only to screen the roof behind them.

8. **Entries.**

a. Each entry should be protected from the elements and should create an architectural focal point for the building.

b. Wall recesses, roof overhangs, canopies, arches, columns, signs, and similar architectural features should be integral elements of the building’s design, and used to call attention to the importance of the entry.

9. **Additions to existing structures.**

a. The design of a proposed addition should follow the same general scale, proportion, massing, and detailing of the original structure, and not be in stark contrast to the original structure. Incorporating the main characteristics of the existing structure may include: the extension of architectural lines from the existing structure to the addition; repetition of bay, window, and entrance spacing and cornice details; roof design and ground-level details; use of the same or complementary colors and materials; and the inclusion of similar architectural details (such as window/door trim, lighting fixtures, tile/brick decoration).

10. **Building materials.** Building materials shall be carefully chosen to enhance the consistency of the architectural theme and design.

a. Materials should be used honestly. Artificial or decorative facade treatments, where one or more unrelated materials appear “stuck-on” a building (such as artificial columns or posts), should be avoided. Artificial products that attempt to imitate real materials (for example, faux wood, stone, brick) are discouraged. However, if artificial stone-like materials are used, they should mimic materials that are available locally (for example, river rock, stone, etc.).
b. Exterior finish materials should be chosen and applied so that they should avoid appearing “thin” and otherwise artificial, as in the case of “brick” veneer applied to a single building face so that it is obviously only ¼-inch thick when viewed from the side. Veneers should turn corners, avoiding exposed edges.

c. The use of awnings is encouraged and should follow the guidelines for the Downtown in Chapter 7.

d. Downspouts and drain pipes should preferably be placed within building walls. If they must be placed on a building exterior, they shall be integrated with the architectural design, colors, and finish materials of the building.

11. Colors.

a. Colors should be compatible with the existing colors of the surrounding area but need not duplicate existing colors. The use of muted tones for the structure’s base color is recommended. Color should not be used as an attention getting device.

b. Accent colors should be used thoughtfully and complement the base color or a variation of its hue, either weaker or stronger.

c. The transition between base and accent colors should relate to changes in building materials or the change of building surface planes. Colors should generally not meet or change without some physical change or definition to the surface plane.

12. Signs. Every structure should be designed with specific consideration for adequate signing, including provisions for sign placement, sign scale in relation to building scale, and readability. The colors, placement, and materials of all signs should be integrated with the architecture and facade details of the structure. (See also the City’s Sign Regulations provided in Municipal Code Chapter 18.90.)
C. Site planning. Project site planning should comply with the following guidelines.

1. Consider neighboring development. Each development proposal should demonstrate consideration for the existing conditions on and off the site including the following.

 a. The uses on, and site layout of neighboring properties;

 b. The architectural style, and the shape and massing of neighboring structures.

 c. Existing natural features (i.e., mature trees, landforms, etc).

 d. Opportunities to preserve or enhance views of the foothills west of the City.

 e. Privacy and solar access of the site and neighboring properties.

 f. Opportunities for new projects to provide physical links to adjacent development using sidewalks, and shared access drives and parking, whenever possible.

 g. Opportunities for new projects to provide visual links to adjacent development in the form of similar landscaping, trees, etc., in addition to contextual architectural design as noted in b. above.

2. Building and parking location.

 a. Buildings should generally be oriented parallel to streets and should be placed as close to the street as required setbacks and consistent building placement permit. Buildings may be angled to create interesting juxtapositions if there is a clear and desirable design goal to be achieved. However, the definition of the street edge is an important role for buildings and should be considered in project design. Exceptions may occur for wider setbacks from the street if a compatible use is proposed (for example, outdoor dining or pedestrian rest area) or to maintain continuity with landscaped areas on adjacent properties.
b. The orientation of buildings should respond to the pedestrian or vehicular nature of the street. Buildings with high pedestrian use should face and be directly accessible from the sidewalk.

Buildings in parts of the City that are more suburban in character and are more auto accessible than pedestrian accessible should not be oriented to large parking lots located between the building and the street, but should instead be oriented to major on-site open space and streetscape elements provided for pedestrian use.

c. Parking areas on adjoining parcels should be connected to allow continuous vehicle and pedestrian access. Pedestrian linkages between parcels should be located separately from vehicle connections where possible, and clearly differentiated from vehicle ways in all cases.

d. Scenic views and any natural features surrounding the site should be considered early during the conceptual design stage of a project.

e. Larger commercial projects and shopping centers should be designed to locate a minimum of 30 percent of the total building frontage (including pad buildings) at the front setback line, with direct pedestrian access to the buildings from the sidewalk. Locating buildings near the front of the property, together with substantial landscaping, strengthens the overall streetscape, and helps screen off-street parking areas.

f. Corner buildings should have a strong tie to the setback lines of each street. The primary mass of the building should not be placed at an angle to the corner. This does not preclude angled building corners, or an open plaza at a corner.

g. Multiple buildings in a single project should be designed to create a visual and functional relationship with one another. Whenever possible, multiple buildings should be clustered to achieve a "village" scale. This creates opportunities for plazas and pedestrian areas while preventing long rows of buildings. When clustering is impractical, a visual link should be established between buildings. This link can be accomplished through the use of an arcade system, trellis, colonnade, landscaping and trees, or enhanced paving.
h. The location of open space areas should be accessible from the majority of structures, and should be oriented to take advantage of sun or shade, and offer wind protection, as appropriate.

i. The visual impact of parking lots should be minimized by locating these facilities to a portion of the site least visible from the street and by providing adequate screening and parking lot landscaping.

j. Projects should connect the on-site pedestrian circulation system to the off-site public sidewalk at least once in each 200 linear feet of sidewalk adjacent to project.

k. Parking areas should be connected to building entrances by means of enhanced (patterned or stamped) paving.

l. Handicapped access should be provided into the property from the nearest point of public transit.

m. Loading facilities should not be located at the front of buildings where they will interfere with customer and employee traffic and be difficult to adequately screen. These facilities are usually more appropriate at the rear of buildings; however, loading areas should not look like an afterthought. They should be screened from street and off-site views to the maximum extent feasible, and shall be architecturally integrated with the design of the building.

Special attention must be given when designing loading facilities in a rear location adjacent to residential uses. Techniques such as block walls, enhanced building setbacks with landscaping, and careful attention to the location and shielding of lighting can help minimize adverse impacts to residents. It is sometimes preferable to require that tenant spaces within a commercial project receive and ship products through the “front door,” rather than subject adjacent residential uses to the noise and night time glare associated with actual loading facilities.
3. Landscaping.

a. Landscaped areas should be planned as an integral part of the overall project and not simply located in “left over” areas of the site.

b. Landscaping should be used to help define outdoor spaces, soften a structure’s appearance, and to screen parking, loading, storage, and equipment areas.
c. The use of on-site pedestrian amenities (such as benches, shelters, drinking fountains, lighting, and trash receptacles) is encouraged. These elements should be provided in conjunction with on-site open spaces and be integrated into the site plan as primary features.

d. Trees shall be used in parking lots to help visually break up large expanses of paving and to provide some shading. Some trees within parking areas should be deciduous, to provide pavement surface shading during the warmer months, and to allow for solar gain during the winter. Tree species should be selected with rooting and canopy patterns to fit the spaces provided them. In general, species with messy fruits, pods, and seeds that will drop on the surfaces below are not good choices.

a. New structures should be oriented to maximize solar access opportunities to the extent feasible;

b. Lot sizes/configurations should be planned to maximize the number of structures oriented so that the south wall and roof area face within 45 degrees of due south, while permitting the structures to receive cooling benefits from prevailing breezes and any existing or proposed shading;

c. Roof-mounted solar collectors should be placed in the most inconspicuous location without reducing the operating efficiency of the collectors. Wall-mounted and ground-mounted collectors should be screened from public view with material that is compatible with the building’s architecture;

d. Roof-mounted collectors should be installed at the same angle or as close as possible to the pitch of the roof;

e. Appurtenant equipment, particularly plumbing and related fixtures, should be installed in the attic or screened from public view; and
f. Exterior surfaces of the collectors and related equipment should have a matte finish and should be color-coordinated to harmonize with roof materials and other dominate colors of the structure.

5. On-site lighting.

a. Exterior lighting should be designed to be compatible with the architectural and landscape design of the project.

b. An appropriate hierarchy of lighting fixtures/structures and intensity should be considered when designing the lighting for the various elements of a project (i.e., building and site entrances, walkways, parking areas, or other areas of the site).

c. The use of exterior lighting to accent a building’s architecture is encouraged. All lighting fixtures should be properly shielded to eliminate light and glare from impacting adjacent properties, and passing vehicles or pedestrians. When neon tubing is used to illuminate portions of a building it should be concealed from view through the use of parapets, cornices or ledges. Small portions of exposed neon tubing may be used to add a special effect to a building’s architecture but this must be well thought out and integrated into the overall design of the project.
d. To achieve the desired lighting level for parking and pedestrian areas, the use of more short, low intensity fixtures is encouraged over the use of a few tall fixtures that illuminate large areas.

6. Screening.

a. Screening is a technique used to protect and separate uses and site functions from one another for the purpose of decreasing adverse noise, wind, or visual impacts and to provide privacy. The need for screening should be considered early in the design process so that screening elements (including walls, fences, berms, and landscaping) can be effectively integrated into the overall project design and not added later as an afterthought.

b. The method of screening should be compatible with the adjacent structure in terms of overall design, materials, and color.

c. Where screening is required at the ground level, a combination of elements should be considered including solid masonry walls, berms, and landscaping.

d. Walls and fences used for screening should comply with the design guidelines in Chapter ___ for walls and fences.

7. Refuse, storage, and equipment areas.

a. Refuse containers, service areas, loading docks, and similar facilities should be located out of view from the general public, and so that their use does not interfere with on-site parking or circulation areas, and adjacent uses, especially residential uses.

b. Trash storage areas that are visible from the upper stories of adjacent structures should be screened with a trellis or other horizontal cover to mitigate unsightly views. The covering structure should be compatible with the architectural style of other structures on the site.
c. Utility equipment (for example, electric and gas meters, electrical panels, and junction boxes) should be located in a utility room within the structure or enclosed utility cabinets at the rear of the structure.

d. Electrical transformers should not be dominant elements in a front landscape area. When transformers are unavoidable in the front setback, they should be placed below grade. If below grade placement is not possible, they should be completely screened by walls and/or thick landscaping, and should be located to not obstruct views of tenant spaces, monument signs, windows, and/or driveways. Underground placement and screening is also necessary when transformers must be located in side setbacks that are visible from the street.

e. All mechanical equipment (e.g., compressors, air conditioners, pumps, heating and ventilating equipment, generators, solar collectors, satellite dishes, communications equipment, etc.) and any other type of mechanical equipment should be concealed from view of public streets, and neighboring properties.

f. Mechanical equipment should not be located on the roof of a structure unless the equipment can be hidden by building elements that were designed for that purpose as an integral part of the architectural design, and not attached as an afterthought.

g. At-grade utility boxes should be underground wherever possible. When underground installation is not feasible, utility boxes should be screened from view and integrated into the landscaping design and not appear as an afterthought to neighborhood design. All above-ground utility boxes shall be provided with protective barriers.
3.2 - Industrial Project Design Guidelines

A. General Design Objectives

1. A variety of building and parking setbacks should be provided to avoid long monotonous building facades and to create diversity within the project.

2. Buildings should be located on "open space islands", which may be formally landscaped or set in a natural open space environment. The main entrance of the building should not directly abut the paved parking area. A minimum five- to seven-foot landscape strip should be provided between parking areas and the portions of the buildings where parking is provided.

3. Building setbacks should be provided proportionate to the scale of the structure and in consideration of existing adjacent development. Larger structures require more setback area for a balance of scale and so as not to impose visually on neighboring uses.

4. The placement of structures to create plazas, courts, or gardens is encouraged. Setback areas can often be used to provide space for patio and outdoor eating areas.

5. The main elements of preferred business park/industrial site design include the following:

 a. Easily identifiable site access;

 b. Service areas located at the sides and rear of buildings;

 c. Convenient access, visitor parking and on-site circulation;

 d. Screening of outdoor storage, work areas, and equipment;

 e. Emphasis on the main building entry and landscaping;

 f. Placement of buildings to provide plazas and courtyards; and

 g. Landscaped open space.
B. Architectural Design

1. Architectural style. The architectural style of buildings in the business park/industrial category should incorporate clean simple lines. Buildings should project an image of high quality through the use of appropriate durable materials and well landscaped settings. Building addresses should be clearly visible and integrated with the landscape design.

2. Expression of structure. As a category of structure type, typically bland industrial buildings often present unattractive, unadorned, "box-like" forms. A variety of design techniques should be used to help overcome this situation and to produce a cohesive design statement.
 a. Avoid long, "unarticulated" facades. Facades with varied front setbacks and recessed entries are strongly encouraged.
 b. Avoid blank front and side wall elevations on street frontages.
 c. Entries to structures should portray a quality office appearance while being architecturally tied into the overall building composition and scale.
 d. Alteration of colors and textures should be used to produce diversity and enhance architectural forms.
 e. A compatible variety of siding materials (i.e., metal, masonry, concrete texturing, cement or plaster) should be used to produce effects of texture and relief that provide architectural interest.
3. **Undesirable elements.** Design elements which are undesirable and should be avoided include:

 a. Large blank, unarticulated wall surfaces;
 b. Exposed, untreated precision block walls;
 c. Chain link fence and barbed wire;
 d. False fronts;
 e. Steeply pitched Mansard roofs;
 f. Materials with high maintenance (such as stained wood, shingles or light gauge metal siding);
 g. Mirror window glazing;
 h. Loading doors facing the street; and
 i. Exposed roof drains and downspouts, except where integrated with the colors, materials, and other details of the building architecture.

C. **Parking and Circulation**

 1. Parking lots should not be the dominant visual elements of the site. Large expansive paved areas located between the street and the building are to be avoided in favor of smaller multiple lots separated by landscaping and buildings and located to the sides and rear of buildings whenever possible.

 2. Site access and internal circulation should be designed in a straightforward manner which emphasizes safety and efficiency. The circulation system should be designed to reduce conflicts between vehicular and pedestrian traffic.
3. Entrances and exits to and from parking and loading facilities should be clearly marked with appropriate directional signage where multiple access points are provided.

4. Parking lots adjacent to and visible from public streets must be adequately screened from view through the use of rolling earth berms, low screen walls, changes in elevation, landscaping or combinations thereof.

D. Loading Facilities

1. To alleviate the unsightly appearance of loading facilities for industrial uses, these areas should not be located at the front of buildings where it is difficult to adequately screen them from view. Loading facilities are generally more appropriate at the rear of the building where they are more functional and can be more effectively screened.

2. When site features prevent the placement of loading facilities at the rear of the building, loading docks and doors may be at the side of the building but must be screened from view by a combination of screen walls, ornamental landscaping and/or portions of the building. Gates should be located so as not to allow views from the public right-of-way into loading areas.

3. Rolling shutter doors located on the inside of the building are the preferred method for providing large loading doors while keeping a clean, uncluttered appearance from the exterior.

4. Loading areas must be designed so that trucks will not need to back-in from the public street onto the site. Such maneuvers are unsafe, and shall not be utilized except at the ends of industrial cul-de-sacs where each circumstance will be considered individually.
Conventional industrial site plan.
E. Landscaping

1. Landscaping should be used to define areas such as entrances to buildings and parking lots, define the edges of various land uses, provide transition between neighboring properties (buffering), and provide screening for outdoor storage, loading and equipment areas.

2. Landscaping should be in scale with adjacent buildings and be of appropriate size at maturity to accomplish its intended purpose.

3. Landscaping around the entire base of buildings is recommended to soften the edge between the parking lot and the structure and the view of the structure from the public right-of-way. Landscaping should be accented at building entrances to provide a focal point.

4. Use berming at the edge of the building in conjunction with landscaping to reduce the apparent height of the structure and its mass, especially along street frontages.

5. Development in areas with native vegetation or located within foothill, riparian, viewshed or other unique natural environments are encouraged to use landscape designs and material which are sensitive to and compatible with existing vegetation.

F. Walls and Fences

1. If walls are not required for a specific screening or security purpose they should not be used. The intent is to keep walls as low as possible while still performing their screening and security functions.

2. Where walls are used at property frontages, or screen walls are used to conceal storage and equipment areas, they should be designed to blend with the site's architecture. Landscaping should be used in combination with such walls whenever possible.

3. Long expanses of fence or wall surfaces should be offset and architecturally designed to prevent monotony. Landscape pockets should be provided along the wall.
4. With taller walls over five feet in height, it may be more appropriate to have a stepped design which allows for the creation of a planter area between wall components. The use of trailing vines or groundcovers in these planters is encouraged.

5. When security fencing is required, it should be a combination of solid pillars, or short solid wall segments, and wrought iron grill work.

G. Screening

1. Exterior storage and loading areas should be confined to portions of the site least visible to public view where screening needs are minimized.

2. Where screening is required, a combination of elements should be used including solid masonry walls, berms, and landscaping. Chain link fencing with wood or metal slatting is an acceptable screening material only for areas not visible from a public street or parking lot.

3. Any equipment, whether on the roof, side of building, or ground, shall be screened from public view. The method of screening shall be architecturally integrated with the building exterior in terms of materials, color, shape, and size. Where individual equipment is provided close together, a continuous screen is desirable versus several smaller screens.

4. Where permanent screening is required between a manufacturing zone and a residential zone, a solid masonry screening wall is required. Evergreen landscaping should be placed adjacent to the wall.

H. Roofs

1. Unless roofing materials are a part of the design element (for example, shingles, tiles), the ridge line elevation should not exceed the parapet elevation.

2. Piecemeal mansard roofs (used on a portion of the building perimeter only) should be avoided. Mansard roofs should wrap around the entire perimeter of the structure.
3. Rooftop equipment must not be visible from adjacent streets. Mechanical equipment, including ducts and pipes, must be contained within rooftop penthouses, or opaque screening that is compatible with the building’s other materials/colors, must be provided to conceal all rooftop equipment.

I. Metal Buildings

1. All metal buildings should be designed to have architectural interest and articulation as is encouraged with conventionally built structures. In addition to architectural metal panels, exterior surfaces should include either stucco, plaster, glass, stone, brick, or decorative masonry. Stock, “off-the-shelf” metal buildings are highly discouraged as main structures.

2. Metal buildings should employ a variety of building forms, shapes, colors, materials and other architectural treatments to add visual interest and variety to the building. Architectural treatments should emphasize the primary entrance to the building.

3. All exterior surfaces of metal buildings that have a risk of being struck and damaged by vehicles or machinery should be protected with landscaped areas, raised concrete curbs, and/or traffic barriers.

J. Signs

1. Every structure should be designed with a precise concept for adequate signing. Provisions for sign placement, sign scale in relation to building scale, and the readability of the sign should be considered in developing the overall project’s signing concept. All signs should be highly compatible with the structure and site design relative to color, material, and placement.
2. Monument-type signs are the preferred alternative for business identification. Where several tenants occupy the same site, individual wall mounted signs are appropriate in combination with a monument sign identifying the business park complex and address.

3. The use of carved wood, or backlit individually cut letter signs is encouraged.

4. The industrial site should be appropriately signed to give directions to loading and receiving areas, visitor parking and other special areas.